Which type of symmetry is present here?

Do you see the symmetry rule demonstrated?

(y)

(x, y)

(x, -y)
Which type of symmetry is present here?

Do you see the symmetry rule demonstrated?

$(-x, y)$ (x, y)
Which type of symmetry is present here?

Do you see the symmetry rule demonstrated?

Title: Sep 20-8:42 AM (3 of 13)
The equation of a circle with center \((h, k)\) and radius \(r\) is given by:

\[(x - h)^2 + (y - k)^2 = r^2\]
#33.

4. \(\left(\frac{5x}{4} + \frac{1}{2} \right) = (x - \frac{1}{2}) \cdot 4 \)

\[5x + 2 = 4x - 2 \]

\[x + 2 = -2 \]

\[x = -4 \]

5. \(\frac{(-4)}{4} + \frac{1}{2} = \ ? \)

\[-5 + \frac{1}{2} = -4 \frac{1}{2} \]
436. \(\frac{9}{2} + 1 = 10 \)

\[\frac{3x}{2} + \frac{1}{4} (x - 2) = 10 \]

4. \(\left(\frac{3x}{2} + \frac{x}{4} - \frac{1}{2} \right) = 10 \cdot 4 \)

6x + x - 2 = 40

7x - 2 = 40

7x = 42

\[x = 6 \]
#75.
\[
x(x-3) \left(\frac{3}{x(x-3)} + \frac{4}{x} \right) = \frac{1}{x-3}, \quad x(x-3)
\]

\[
3 + 4x - 12 = x
\]

\[
4x - 9 = x
\]

\[
3x - 9 = 0
\]

\[
3x = 9
\]

\[
x = 3 \quad \text{no solution}
\]
\[
\frac{3}{x(x-3)} + \frac{4}{x(x-3)} = \frac{1}{x-3}
\]

\[
\frac{3 + 4x - 12}{x^2 - 3x} = \frac{4x - 9}{x^2 - 3x} = \frac{1}{x-3}
\]
\[(2n-1)(2n+1) = 4n^2 - 1\]

\[\frac{1}{2} \cdot 20 \cdot h = 10h\]

\[\frac{s_2 - s_1}{s_1}\]
#32, \[a, \quad \frac{1}{5} a, \quad a, \frac{a}{5} \]

\[5 \left(a - \frac{a}{5} \right) = 76.5 \]

\[5a - a = 380 \]

\[4a = 380 \]

\[a = 95 \quad \text{other #} \]

\[\frac{a}{5} : 19 \]
\[
\frac{1}{x} \left(\frac{15}{x} - 4 \right) = \left(\frac{6}{x} + 3 \right) \cdot x
\]

\[
15 - 4x = 6 + 3x
\]

\[
15 = 6 + 7x
\]

\[
9 = 7x
\]

\[
\frac{9}{7} = x
\]
#39. 12 is \(\frac{1}{2} \% \) of what number?

\[
12 = 0.005 \cdot x
\]

\[
\frac{12}{0.005} = x
\]

\[
2400 = x
\]
42. a, .85 a
sales person, co-worker

\[a + .85a = 645 \]
\[1.85a = 645 \]

x, y

\[y = .85x \]
\[x + y = 645 \]